
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015 pp. 37-40
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

Metamorphic Testing as a Testing Technique and
an Automated Debugging Tool

Jasmine Kaur1 and Harpreet Kaur2
1Department of Computer Engineering Punjabi University Patiala Punjab, India

2Faculty of Department of Computer Engineering Punjabi University Patiala Punjab, India
E-mail: 1jasminekhurma@yahoo.com, 2moonkhurma@gmail.com

Abstract—Metamorphic Testing (MT) is an efficient methodology
for testing those programs which are sometimes called as “Non-
testable”, this is because most of the times it becomes complicated
for testers to know whether the imminent outputs are accurate or not.
This is the case in such category of programs, when the test oracles
don’t exist. In MT, oracle is not the necessary condition and it
depends only upon the Metamorphic Relations (MR). The pioneer
researcher T.Y.Chen, has implemented this technique on diverse
programs like Partial Differential Equations, Sine function, Median,
Area, Replace, Wireless Embedded System Software, Group Theory,
etc. Now a days, MT is integrated with some other techniques. The
use of metamorphic testing technique firstly started with the testing of
the numerical programs however, presently its coverage has
successfully widened to test the non-numerical programs too. But
metamorphic testing (MT) is dependent upon the properties of
programs under test (PUT), from which metamorphic relations (MR)
can be obtained. In this paper, MT has been applied on the two
mathematical programs, to demonstrate its usefulness. This paper
also examines the MR’s and the extent of their usefulness in the
program testing. . It has been observed that a strong metamorphic
relation is a relation where it involves the execution of the interior
functionality and as such would efficiently validate the specified
function. Hence, the most critical type of error which is known as
missing path error has been discovered in one of the program. So, by
this way the effectiveness of metamorphic testing has been proved.
The debugging of these programs has also been done. The method
used in the paper also supports automatic debugging through the
detection of constraint in expressions that divulge failures.

1. INTRODUCTION

Software testing is an important step to complete the process
of software development. Software testing is an investigation
conducted to provide stakeholders with information about the
quality of the product or service under test. Software testing
can also provide an objective, independent view of
the software to allow the business to appreciate and
understand the risks of software implementation. There are
many techniques to test the software, with the help of these
techniques, the process of executing a program or application
with the purpose of finding software bugs (errors or other
defects) is implemented. Software testing can be done as soon
as executable software (even if partially complete) is ready to

be completed. An oracle is used in software testing to check
whether the program under test (PUT) produces the expected
output when executed using a set of test cases. A program is
considered non-testable [1] when an oracle does not exist or is
impractical to implement even though theoretically possible.
So, the testing technique called as Metamorphic Testing (MT)
is the best solution to find out the errors and to debug those
too, so in this kind of situation if any other testing technique is
applied then tracking of errors is not definite. While, in MT
oracle is not the necessary condition and it depends only upon
the Metamorphic Relations (MR). The pioneer researcher
T.Y.Chen, has implemented this technique on diverse
programs like Partial Differential Equations, Sine function,
Median, Area, Replace, Wireless Embedded System Software,
Group Theory, etc. He has also integrated MT with Semi-
Proving technique and with Program Slicing. He applied this
technique earlier only on the programs which were numeric.
Recently, T.Y.Chen as well as many other researchers have
integrated MT with Fault-Based testing and have also
practiced checkpoints for enhancement in MT technique.

In this paper, after introduction in section 1, meaning and
procedure of metamorphic testing are discussed in section 2.
Section 3 contains the implementation of MT on trisquare
program and its results in tabular form. The testing of a
Median program using MRs is done in section 4. The
conclusion is presented in section 5.

2. METAMORPHIC TESTING

Metamorphic testing was proposed to overcome some of the
inherent problems that are present in testing software without
test oracles [2,3]. It is a software testing technique that
attempts to alleviate the test oracle problem. A test oracle is
the mechanism by which a tester can determine whether a
program has failed. Metamorphic testing involves the
verification of a metamorphic relation R of function f, of
which p is an implementation. The concept of metamorphic
relation R has a number of characteristics. Firstly,
metamorphic relationships are necessary properties of the
target function f. If any of these properties does not hold

Jasmine Kaur and Harpreet Kaur

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

38

during testing, the program p is faulty. Secondly, a
metamorphic relation is a relationship among the inputs and
outputs involving multiple executions of p [3]. These
Metamorphic Relations offer a new viewpoint on verifying
test results. Unlike traditional testing, Metamorphic Testing
always involves multiple test case executions with their
corresponding outputs being verified using the Metamorphic
Relations rather than a test Oracle. The formation of MRs is
not restricted to identity relations. Any expected relation
linking inputs and outputs of two or more executions of the
program can be taken as an MR. The basic idea of MT is like
this: Given a series of inputs satisfying a certain condition, if
another condition should hold in the corresponding series of
outputs, then we can check the relation between the input and
output conditions to verify the correctness of the program. The
relation associating the conditions of the series of inputs and
the series of outputs is known as a metamorphic relation.
When a metamorphic relation breaks, we shall definitely know
that the implementation under test contains fault(s). In other
words, program p must appear in the relation more than once.
Although special value testing provides a way to test program
correctness, there is no theoretical ground why special value
testing is sufficient in ensuring program correctness.
Metamorphic testing complements special value testing by its
ability to test the necessary properties of the function.
Moreover, the test data set used by metamorphic testing is
augmented by using random test values.

The examples used in this paper follow the general approach
where a) a set of special values and expected test outputs are
selected to be used in the testing; b) a fault is introduced to a
test program, called a mutant program; c) metamorphic
relations for the function are defined; d) perform metamorphic
testing as well as special value testing.

3. METAMORPHIC TESTING OF TRISQUARE
PROGRAM

Here we use the typical triangle program called Tri-Square to
conduct metamorphic testing. Type and square of this triangle
are calculated The seven metamorphic relations have been
constructed in literature [6]. This program first decides
whether 3 positive real numbers, a, b and c, could construct a
triangle. The input domain of the program TriSquare can be
divided into arbitrary triangle class, equilateral triangle class
and isosceles triangle class which is a composite equivalence
class. The isosceles triangle class can be further divided into a
= b isosceles triangle class, a = c isosceles triangle class and b
= c isosceles triangle class (a, b, and c are the different edges
of the same triangle). We construct 7 binary MRs for
TriSquare, details are shown in Table 1.

Table 1: Metamorphic Relations

MR Dbl (mri) Relations
MR1 (a’, b’, c’) = (b, a, c)

For 4 MR
TriSquare(a' ,b' ,c')

MR2 (a’, b’, c’) = (a, c, b)
MR3 (a’, b’, c’) = (c, b, a)

MR4 (a’, b’, c’) = (2*a, 2*b, 2*c) =4×TriSquare(a,b,c)
 Others
TriSquare(a' ,b' ,c')
=TriSquare(a,b,c)

MR5 (a' ,b' ,c')=(2b2+2c2 -a2 ,b,c)

MR6 (a' ,b' ,c')=(a, 2a2+2c2 -b2 ,c)

MR7 (a' ,b' ,c')=(a,b, 2a2+2b2 -c2)
Note: The domain of metamorphic relations is
{(a,b,c): (a+b>c) (b+c>a) ^ (a+c>b))}

3.1. Injecting the Faults

Mutation analysis is a powerful technique to assess the quality
of a test suite [4]. As MRs’ performance is embodied by MT
test suite, we use mutation analysis here to estimate test suites
and MRs. Four mutants are imported into TriSquare based on
two types of mutant operators: AOR(Arithmetic Operator
Replacement) and DSA(Data Statement Alterations) [5]:

Mutant1: Exchange sentence 2 and 3.

Mutant2: Replace sentence 11 with “p= (a+b+c)*2”.

Mutant3: Replace “/2” in 18, 23 and 28 with “*2”.

Mutant4: Replace sentence 30 with “return sqrt(3)*a*a/2”.

3.2. Measurements for Test Suite and MR

The effectiveness of a testing method can be measured
quantitatively at two levels in different granularities: one is by
counting the number of mutants that could be detected; and
the other by calculating how many of its test cases are able to
detect a particular mutant.

MR Detection Performance (MDP):

Relat
ion

Spec
ial
test
valu
es

1,2,3 2,2,1 7,7,7 5,7,6
M
1

M
2

M
3

M
4

M
1

M
2

M
3

M
4

M
1

M
2

M
3

M
4

M
1

M
2

M
3

M
4

L.H.S R.H.
S

T T T T T T T T T T T T T T T T

a,b,c b,a,c
a,b,c a,c,b T F F T T T T T T T T T T T T T
a,b,c c,b,a T T T T F T F T T T T T T T F T
a,b,c 2*a,

2*b,
2*c

T T T T F F F F F F F F F F F F

a,b,c Sqrt(
(2*b
*b)
+(2*
c*c)-
(a*a)
),b,c

T T T T F F F F F F F F T F F T

a,b,c a,Sqr
t((2*
a*a)
+(2*
c*c)-
(b*b)
),c

T F F T F F F F F F F F T F F T

Metamorphic Testing as a Testing Technique and an Automated Debugging Tool 39

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

a,b,c a,b,S
qrt((
2*a*
a) +
(2*b
*b)-
(c*c)
)

F F F T T T T T F F F F T F F T

Measure the mutation detection performance of mr in terms of
test suite TC, which is the number of mutants that the test
cases using mr could find:

MDP (mr,TC)= ∑i=1
n

 FindMuti (5)

FindMuti is 1 if at least one test case that uses mr could detect
the ith mutant, otherwise is 0, and n is the number of mutants.

MR Detection ratio for each Mutant (MDM):

Measure the detection performance of MR mr for each mutant
in terms of test suite TC, which is thepercentage of failed test
cases using mr : MDM(mr,mp,TC) = Nmrf Nmrmp (6) , where
mp is a mutant program, Nmrf the number of test cases which
use mr and could detect the mutant in mp, and Nmrmp the
number of test cases that use mr and executes paths including
mutants.

We have implemented MT on trisquare program and
calculated MDM and MDP values for it.

Table 2: Result of MDM and MDP value for Trisquare program

MR MDM1 MDM2 MDM3 MDM4 MDP
mr1 0% 0% 0% 0% 0
mr2 30% 40% 30% 0% 3
mr3 10% 0% 40% 0% 2
mr4 60% 60% 60% 60% 4
mr5 30% 60% 60% 30% 4
mr6 50% 100% 100% 40% 4
mr7 60% 90% 90% 30% 4

Table 2 shows the MDM and MDP values of program
Trisquare. It has been shown that mr6 is the powerful relation
which have highest mutant detection ratios and mr1 is the
weakest of all relations.

4. METAMORPHIC TESTING OF MEDIAN
PROGRAM

Fig. 1 shows a program Med. It accepts three integers u, v and
w as input and returns their median as output. The program is
adapted from, where it was used as a worst-case example to
illustrate the technique of constraint-based test case generation
for mutation testing. Here three integers are given as input,
and according to their corresponding values output comes.
And hence depending upon different conditions seven
metamorphic relations have been developed.

4.1. Injection of faults in the program

The two type of faults were injected in the program Med to
perform the task of metamorphic testing. The first fault (Fault
1) was created by deleting the 5 and 6 line from the code. And
then second fault (Fault 2) was generated by removing 9 and
10 lines from the same code. These two faults have been
divided into two zones i.e Zone 1 and Zone 2, for the purpose
of debugging. The faulty programs are named as medbar and
medbar1. These faults are known as missing path errors which
are very difficult to find out by any other simple test cases.
Hence MT has been used to check its efficiency against them.

Table 5: Table showing Faults of program medianbar

Faults Deleted paths Zones
1 If (U < W) Then Med = U Zone 1
2 If (U > W) Then Med = U Zone 2

Fig. 1: Program Med Fig. 2: Program Medbar

The programs are shown above in Fig. 1 and Fig.2. In which
Med is the correct program and Medbar is the program which
contain errors in it. The different test values of u, v and w
depending upon the eight MRs have been used as input values.
Then the expected value of Medbar was compared with actual
value which is coming after the execution. The results are
shown in Table 6.

4.2. Results analysis of Medbar program

We have found that for the test values 2,3,1 the expected and
actual outputs are not same. As for fp(x) which is expected
value, it is 2 and 1 for fp’(x’) after execution of the faulty
program. But it has been detected that where the error exist
with the help of metamorphic relations. As here the error
exists in MR2, which lies in Zone2. And we have described
before in Table 5 that Zone 2 is the error zone for the missing
path error.

int Medbar (int u, int v, int
w){
int med;
1 med = w;
2 if (v < w)
3 if (u < v)
4 med = v;
 else {

 else
7 if (u > v)
8 med = v;
 else {
9 if (u > w)
10 med = u; }
11 return med; }

int Med (int u, int v, int w) {
int med;
1 med = w;
2 if (v < w)
3 if (u < v)
4 med = v;
 else {
5 if (u < w)
6 med = u; }
 else
7 if (u > v)
8 med = v;
 else {
9 if (u > w)
10 med = u; }
11 return med; }

Jasmine Kaur and Harpreet Kaur

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

40

So, here the missing path which has been detected is “If (U >
W) Then Med = U”.

Table 6: Result from metamorphic testing of
medbar program fp’(x’)

Special
Test

Values

Metamorphic
Relation’s

fp(x)=
expected

result

fp’(x’)=
actual
result

Zone

1,2,3 MR1 U<W>V 2 2 ___
2,3,1 MR2 U>W<V 2 1 Zone 2
3,2,3 MR3 U=W>V 3 3 ___
1,2,1 MR4 U=W<V 1 1 ___
2,3,3 MR5 U<W=V 3 3 ___
1,3,2 MR6 U<W<V 2 2 ___
3,1,2 MR7 U>W>V 2 2 ___
2,1,3 MR1 U<W>V 2 2 ___
3,2,1 MR2 U>W<V 2 2 ___

5. CONCLUSION

This paper demonstrates the effectiveness of metamorphic
testing. Metamorphic testing can reveal faults effectively as
compared to any other special value testing technique. Both
example programs used in this paper lack test oracles.
Metamorphic testing alleviates this issue through testing of
metamorphic relationships. The most critical type of error
which is known as missing path error has been detected in one
of the program. Hence, proving the effectiveness of
metamorphic testing. It has been concluded that a strong
metamorphic relationship is a relationship where it involves
the execution of the core functionality and as such would
effectively verify the function. A strong metamorphic
relationship also has a high sensitivity to fault meaning that
the relationship does not hold true for most input data. This is
due to the nature of the faults and how they are related to the

metamorphic relation. Hence, metamorphic testing could
provide an effective way to detect errors in programs where
test oracle is lacking and hence with the help of metamorphic
relations, the automatic debugging process can also be done.
But like other testing approaches, metamorphic testing only
demonstrates the presence but not the absence of faults. So In
other words, metamorphic testing does not prove the
correctness of the program and so it should be used by
integrating it by any other testing technique in future to
increase its effectiveness.

REFERENCES

[1] Upulee Kanewala and James M. Biema, “Techniques for Testing
Scientific Programs without an Oracle”, IEEE Computer
Society, 2013, pp 48-57.

[2] T.Y. Chen, T.H. Tse and Z. Q. Zhou, “Semi-proving: an
integrated method based on global symbolic evaluation and
metamorphic testing”, In the Proceedings of the International
Symposium on Software Testing and Analysis, 2002, pp.191-
195.

[3] T.Y. Chen, T. H. Tse and Z.Q. Zhou, “Fault-based testing
without the need of oracles”, Information and Software
Technology, vol.45, no. 1, 2003, pp.1-9.

[4] P. Wu, X.C. Shi, J.J. Tang and T.Y. Chen, “Metamorphic Testing
and Special Case Testing: A Case Study”, Journal of Software,
2005. pp. 1210-1220.

[5] A.J. Offutt, G. Rothermel, and C. Zapf, “An Experimental
Determination of Sufficient Mutant Operators”, ACM
Transactions on Software Engineering and Methodology, 1996,
pp. 99-118.

[6] Guowei Dong, Changhai Nie and Lulu Wang, “An Effective
Iterative Metamorphic Testing Algorithm Based on Program
Path Analysis”, in Seventh International Conference on Quality
Software, IEEE Computer society, 2007.

